Conaf

It's a good idea to use
your programming
language as the basis
for PDL. You can then
generate a code
skeleton mixed with
narrative fext as you
develop the design.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 351

A program design language may be a simple transposition of a language such as
Ada, C, or Java. Basic PDL syntax should include constructs for component definition,
interface description, data declaration, block structuring, condition constructs, repeti-
tion constructs, and 1/0 constructs. It should be noted that PDL can be extended to in-
clude keywords for multitasking and/or concurrent processing, interrupt handling,
interprocess synchronization, and many other features. The application design for
which PDL is to be used should dictate the final form for the design language. The for-
mat and semantics for some of these PDL constructs are presented in the example that
follows.

To illustrate the use of PDL, we consider a procedural design for the SafeHome se-
curity function discussed in earlier chapters. The system monitors alarms for fire,
smoke, burglar, water, and temperature (e.g., furnace breaks while homeowner is
away during winter), produces an alarm bell, and calls a monitoring service, gener-
ating a voice-synthesized message. In the PDL that follows, we illustrate some of the
important constructs noted in earlier sections.

Recall that PDL is not a programming language. The designer can adapt as re-
quired without worry of syntax errors. However, the design for the monitoring soft-
ware would have to be reviewed (do you see any problems?) and further refined
before code could be written. The following PDL® provides an elaboration of the pro-
cedural design for an early version of an alarm management component.

component alarmManagement;
The infent of this component is to manage control panel switches and input from sensors by
type and to act on any alarm condition that is encountered.
set default values for system8tatus (returned value), all data items
initialize all system ports and reset all hardware
check controlPanel8witches (cps)
if cps = “test" then invoke alarm set to "on"
if cps = "alarmOff" then invoke alarm set to "off"

default for cps = none
reset all sighalValues and switches
do for all sensors
invoke check8ensor procedure returning signalValue
if signalValue > bound [alarmType]
then phone.message = message [alarmType]
set alarmBell fo "on" for alarmTimeSeconds

8 The level of detail represented by the PDL is defined locally. Some people prefer a more natural
language-oriented description while others prefer something that is close to code.

352 PART TWO SOFTWARE ENGINEERING PRACTICE

set system status = "alarmCondition”
parbegin
invoke alarm procedure with “on", alarmTimeSeconds:
invoke phone procedure set to alarmType, phoneNumber
parend
else skip
endif
enddofor

end alarmManagement

Note that the designer for the alarm management component has used the construct
parbegin . . . parend that specifies a parallel block. All tasks specified within the parbegin
block are executed in parallel. In this case, implementation details are not considered.

Program Design Language

-
Q Objective: Although the vast majority of the creation of designs using a defined version
software engineers who use PDL or pseudocode of PDL.
develop a version that is adapted from the programming DocGen, distributed by Software Improvement Group
language that they intend to use for implementation, a (http:/ /www.software-improvers.com/DocGen.htm), is
number of PDL fools do exist. a reverse engineering fool that generates PDL-like

documentation from Ada and C code.
PowerPDL, developed by, Iconix
{http:/ /www.iconixsw.com/SpecSheets/PowerPDL.
html), allows a designer to create PDL based designs
and then translates pseudocode into the forms that can
Representative Tools® generate other design representations.
PDL/81, developed by Caine, Farber, and Gordon
k(hﬂp://www.cfg.com/pdlm /lpd.html), supports J

Mechanics: In some cases, the tools reverse engineer
existing source code (a sad redlity in a world where some
programs have absolutely no documentation at all). Others
allow a designer to create PDL with an automated assist.

11.5.4 Comparison of Design Notation

Design notation should lead to a procedural representation that is easy to understand
and review. In addition, the notation should enhance “code to” ability so that code
does, in fact, become a natural by-product of design. Finally, the design representation
must be easily maintainable so that design always represents the program correctly.
A natural question that arises in any discussion of design notation is: What nota-
tion is really the best, given the attributes noted above? Any answer to this question
is subjective and open to debate. However, it appears that program design language
offers the best combination of characteristics. PDL may be embedded directly into
source listings, improving documentation and making design maintenance less dif-

9 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 353

ficult. Editing can be accomplished with any text editor or word-processing system,
automatic processors already exist, and the potential for “automatic code genera-
tion” is good.

However, it does not follow that other design notation is necessarily inferior to
PDL or is “not good” in specific attributes. The pictorial nature of activity diagrams
and flowcharts provides a perspective on control flow that many designers prefer.
The precise tabular content of decision tables is an excellent tool for table-driven ap-
plications. And many other design representations (e. g., Petri nets), not presented in
this book, offer their own unique benefits. In the final analysis, the choice of a design
tool may be more closely related to human factors than to technical attributes.

The component-level design action encompasses a sequence of tasks that slowly re-
duces the level of abstraction with which software is represented. Component-level
design ultimately depicts the software at a level of abstraction that is close to code.

Two different views of component-level design may be taken, depending on the
nature of the software to be developed. The object-oriented view focuses on the
elaboration of design classes that come from both the problem and infrastructure do-
main. The conventional view refines three different types of components or modules:
control modules, problem domain modules, and infrastructure modules. In both
cases, basic design principles and concepts that lead to high-quality software are ap-
plied. When considered from a process viewpoint, component-level design draws on
reusable software components and design patterns that are pivotal elements of
component-based software engineering.

Object-oriented component-level design is class-based. A number of important
principles and concepts guide the designer as classes are elaborated. Principles such
as the Open-Closed Principle and the Dependency Inversion Principle, and concepts
such as coupling and cohesion guide the software engineer in building testable, im-
plementable, and maintainable software components. To conduct component-level
design in this context, classes are elaborated by specifying messaging details, iden-
tifying appropriate interfaces, elaborating attributes and defining data structures to
implement them, describing processing flow within each operation, and represent-
ing behavior at a class or component level. In every case, design iteration (refactor-
ing) is an essential activity.

Conventional component-level design requires the represention of data struc-
tures, interfaces, and algorithms for a program module in sufficient detail to guide in
the generation of programming language source code. To accomplish this, the de-
signer uses one of a number of design notations that represent component-level de-
tail in either graphical, tabular, or text-based formats.

Structured programming is a procedural design philosophy that constrains the
number and type of logical constructs used to represent algorithmic detail. The intent

354

PART TWO SOFTWARE ENGINEERING PRACTICE

of structured programming is to assist the designer in defining algorithms that are
less complex and therefore easier to read, test, and maintain.

[AMBO02] Ambler, S., “UML Component Diagramming Guidelines,” available at http://www.
modelingstyle.info/, 2002.

[BENO2] Bennett, S., S. McRobb, and R. Farmer, Object-Oriented Analysis and Design, 2nd ed.,
McGraw-Hill, 2002.

[BOH66] Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines and Languages with Only
Two Formation Rules,” CACM, vol. 9, no. 5, May 1966, pp. 366-371.

[CAI75] Caine, S. and K. Gordon, “PDL—A Tool for Software Design,” in Proc. National Computer
Conference, AFIPS Press, 1975, pp. 271-276.

[DIJ65] Dijkstra, E., “Programming Considered as a Human Activity,” in Proc. 1 965 IFIP Congress,
North-Holland Publishing Co., 1965.

[DY72] Dijkstra, E., “The Humble Programmer,” 1972 ACM Turing Award Lecture, CACM, vol. 15,
no. 10, October, 1972, pp. 859-866.

[DY76] Dijkstra, E., “Structured Programming,” in Software Engineering, Concepts and Tech-
niques, (J. Buxton et al., eds.), Van Nostrand-Reinhold, 1976.

[HUR83] Hurley, R. B., Decision Tables in Software Engineering, Van Nostrand-Reinhold, 1983.

[LETO1] Lethbridge, T., and R. Laganiere, Object-Oriented Software Engineering: Practical Software
Development Using UML and Java, McGraw-Hill, 2001.

[LIS88] Liskov, B., “Data Abstraction and Hierarchy,” SIGPLAN Notices, vol. 23, no. 5, May 1988.

{MAROO] Martin, R., “Design Principles and Design Patterns,” downloaded from http://www.ob-
jectmentor.com, 2000.

{OMGO1] OMG Unified Modeling Specification, Object Management Group, version 1.4, Septem-
ber, 2001.

[WAR98] Warmer, J., and A. Klepp, Object Constraint Language: Precise Modeling with UML,
Addison-Wesley, 1998.

11.1. What is a guard-condition, and when is it used?

11.2. Why are control components necessary in conventional software and generally not re-
quired in object-oriented software?

11.3. Describe the OCP in your own words. Why is it important to create abstractions that serve
as an interface between components?

11.4. Is it reasonable to say that problem domain components should never exhibit external
coupling? If you agree, what types of components would exhibit external coupling?

11.5. Describe the DIP in your own words. What might happen if a designer depends too heav-
ily on concretions?

11.6. Select three components that you have developed recently and assess the types of cohesion
that each exhibits. If you had to define the primary benefit of high cohesion, what would it be?

11.7. Select three components that you have developed recently and assess the types of coupling
that each exhibits. If you had to define the primary benefit of low coupling, what would it be?

11.8. Do some research and develop a list of typical categories for infrastructure components.

11.9. The term component is sometimes a difficult one to define. First provide a generic defini-
tion, and then provide more explicit definitions for OO and conventional software. Finally, pick
three programming languages with which you are familiar and illustrate how each defines a
component.

CHAPTER 11 MODELING COMPONENT-LEVEL DESIGN 355

11.10. The terms public and private attributes are often used in component-level design work.
What do you think each means and what design concepts do they try to enforce?

11.11. Select a small portion of an existing program (approximately 50-75 source lines). Iso-
late the structured programming constructs by drawing boxes around them in the source code.
Does the program excerpt have constructs that violate the structured programming philosophy?
If so, redesign the code to make it conform to structured programming constructs. If not, what
do you notice about the boxes that you've drawn?

11.12. What is a persistent data source?
11.13. Are stepwise refinement and factoring the same thing? If not, how do they differ?

11.14. Develop (1) an elaborated design class; (2) interface descriptions; (3) an activity diagram
for one of the operations within the class; (4) a detailed statechart diagram for one of the Safe-
Home classes that we have discussed in earlier chapters.

11.15. Do a bit of research and describe three or four OCL constructs or operators that have
not been discussed in Section 11.4.

11.16. What is the role of interfaces in a class-based component-level design?

Design principles, concepts, guidelines, and techniques for object-oriented design classes and com-
ponents are discussed in many books on object-oriented software engineering and OO analysis and
design. Among the many sources of information are Bennett and his colleagues {BEN02], Larman
(Applying UML and Patterns, Prentice-Hall, 2001), Lethridge and Laganiere [LETO1], and Nicola and
her colleagues (Streamlined Object Modeling: Patterns, Rules and Implementation, Prentice-Hall,
2001), Schach (Objeci-Oriented and Classical Software Engineering, fifth edition, McGraw-Hill,
2001), Dennis and his colleagues (Systems Analysis and Design: An Object-Oriented Approach with
UML, Wiley, 2001), Graham (Object-Oriented Methods: Principles and Practice, Addison-Wesley,
2000), Richter (Designing Flexible Object-Oriented Systems with UML, Macmillan, 1999), Stevens
and Pooley (Using UML: Software Engineering with Objects and Components, revised edition, Addison-
Wesley, 1999), and Riel (Object-Oriented Design Heuristics, Addison-Wesley, 1996).

The design by contract concept is a useful design paradigm. Books by Mitchell and McKim
(Design by Contract by Example, Addison-Wesley, 2001) and Jezequel and his colleagues (Design
Patterns and Contracts, Addison-Wesley, 1999) cover this topic in some detail. Metsker (Design
Patterns Java Workbook, Addison-Wesley, 2002) and Shalloway and Trott (Design Patterns Ex-
plained: A New Perspective on Object-Oriented Design, Addison-Wesley, 2001) consider the im-
pact of patterns on the design of software components. Design iteration is essential for the
creation of high-quality designs. Fowler (Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999) provides useful guidance that can be applied as a design evolves.

The work of Linger, Mills, and Witt (Structured Programming—Theory and Practice, Addison-
Wesley, 1979) remains a definitive treatment of the subject. The text contains a good PDL as well
as detailed discussions of the ramifications of structured programming. Other books that focus
on procedural design issues for traditional systems include those by Robertson (Simple Program
Design, third edition, Course Technology, 2000), Farrell (A Guide to Programming Logic and De-
sign, Course Technology, 1999), Bentley (Programming Pearls, second edition, Addison-Wesley,
1999), and Dahl (Structured Programming, Academic Press, 1997).

Relatively few recent books have been dedicated solely to component-level design. In gen-
eral, programming language books address procedural design in some detail but always in the
context of the language that is introduced by the book. Hundreds of titles are available.

A wide variety of information sources on component-level design are available on the In-
ternet. An up-to-date list of World Wide Web references that are relevant to component-level
design can be found at the SEPA Web site: '
http://www.mhhe.com/pressman.

KEY
CONCEPTS
accessibility
desga stops
golden rules
help focilities
interface
analysis
consistency
evalvation
medels
internationalization
ebject olaboration
patters
task analysis
wsohility
workflow analysis

PERFORMING USER
INTERFACE DESIGN

he blueprint for a house (its architectural design) is not complete without

a representation of doors, windows, and utility connections for water,

electricity, and telephone (not to mention cable TV). The “doors, windows,
and utility connections” for computer software make up the interface design ofa
system. '

Interface design focuses on three areas of concern: (1) the design of interfaces
between software components, (2) the design of interfaces between the software
and other nonhuman producers and consumers of information (i.e., other exter-
nal entities), and (3) the design of the interface between a human (i.e., the user)
and the computer. In this chapter we focus exclusively on the third interface de-
sign category—user interface design.

In the preface to his classic book on user mtexface design, Ben Shneiderman
[SHN90] states:

Frustration and anxiety are part of daily life for many users of computerized informa-
tion systems. They struggle to learn command language or menu selection systems
that are supposed to help them do their job. Some people encounter such serious
cases of computer shock, terminal terror, or network neurosis that they avoid using
computerized systems.

“The problems to which Shneiderman alludes are real. It is true that graphical user

interfaces, windows, icons, and mouse picks have eliminated many of the most

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 357

horrific interface problems. But even in a “Windows world,” we all have encountered
user interfaces that are difficult to learn, hard to use, confusing, counterintuitive, un-
forgiving, and in many cases, totally frustrating. Yet, someone spent time and energy
building each of these interfaces, and it is not likely that the builder created these
problems purposely.

User interface design has as much to do with the study of people as it does with
technology issues. Who is the user? How does the user learn to interact with a new
computer-based system? How does the user interpret information produced by the
system? What will the user expect of the system? These are only a few of the many
questions that must be asked and answered as part of user interface design.

In his book on interface design, Theo Mandel [MAN97] coins three “golden rules”:

1. Place the user in control.
2. Reduce the user’'s memory load.

3. Make the interface consistent.

These golden rules actually form the basis for a set of user interface design princi-
ples that guide this important software design action.

12.1.1 Place the User in Control

During a requirements-gathering session for a major new information system, a key
user was asked about the attributes of the windows-oriented graphical interface.
“What I really would like,” said the user solemnly, “is a system that reads my mind.
It knows what I want to do before I need to do it and makes it very easy for me to get
it done. That'’s all, just that.”

My first reaction was to shake my head and smile, but I paused for a moment.
There was absolutely nothing wrong with the user’s request. She wanted a system
that reacted to her needs and helped her get things done. She wanted to control the
computer, not have the computer control her.

Most interface constraints and restrictions that are imposed by a designer are in-
tended to simplify the mode of interaction. But for whom? In many cases, the designer
might introduce constraints and limitations to simplify the implementation of the in-
terface. The result may be an interface that is easy to build, but frustrating to use.

358

PART TWO SOFTWARE ENGINEERING PRACTICE

Mandel [MAN97] defines a number of design principles that allow the user to
maintain control:

Define interaction modes in a way that does not force a user into unneces-
sary or undesired actions. An interaction mode is the current state of the inter-
face. For example, if spell check is selected in a word-processor menu, the software
moves to a spell-checking mode. There is no reason to force the user to remain in
spell-checking mode if the user desires to make a small text edit along the way. The
user should be able to enter and exit the mode with little or no effort.

Provide for flexible interaction. Because different users have different interac-
tion preferences, choices should be provided. For example, software might allow a
user to interact via keyboard commands, mouse movement, a digitizer pen, or voice
recognition commands. But every action is not amenable to every interaction mech-
anism. Consider, for example, the difficulty of using keyboard commands (or voice
input) to draw a complex shape.

Allow user interaction to be interruptible and undoable. Even when involved
in a sequence of actions, the user should be able to interrupt the sequence to do
something else (without losing the work that had been done). The user should also
be able to “undo” any action.

Streamline interaction as skill levels advance and allow the interaction to
be customized. Users often find that they perform the same sequence of interac-
tions repeatedly. It is worthwhile to design a “macro” mechanism that enables an ad-
vanced user to customize the interface to facilitate interaction.

Hide technical internals from the casual user. The user interface should move
the user into the virtual world of the application. The user should not be aware of the
operating system, file management functions, or other arcane computing technol-
ogy. In essence, the interface should never require that the user interact at a level
that is “inside” the machine (e.g., a user should never be required to type operating
system commands from within application software).

Design for direct interaction with objects that appear on the screen. The
user feels a sense of control when able to manipulate the objects that are necessary
to perform a task in a manner similar to what would occur if the object were a phys-
ical thing. For example, an application interface that allows a user to “stretch” an ob-
ject (scale it in size) is an implementation of direct manipulation.

:«, m“’“bﬂseusyto&se "S"‘Ymny‘u;

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 359

12.1.2 Reduce the User's Memory Load

The more a user has to remember, the more error-prone interaction with the system
will be. It is for this reason that a well-designed user interface does not tax the user’s
memory. Whenever possible, the system should “remember” pertinent information
and assist the user with an interaction scenario that assists recall. Mandel [MAN97]
defines design principles that enable an interface to reduce the user’s memory load:

Reduce demand on short-term memory. When users are involved in complex
tasks, the demand on short-term memory can be significant. The interface should be
designed to reduce the requirement to remember past actions and results. This can
be accomplished by providing visual cues that enable a user to recognize past ac-
tions, rather than having to recall them.

Establish meaningful defaults. The initial set of defaults should make sense for the
average user, but a user should be able to specify individual preferences. However, a
“reset” option should be available, enabling the redefinition of original default values.

Define shortcuts that are intuitive. When mnemonics are used to accomplish a
system function (e.g., alt-P to invoke the print function), the mnemonic should be tied
to the action in a way that is easy to remember (e.g., first letter of the task to be invoked).

The visual layout of the interface should be based on a real world metaphor.
For example, a bill payment system should use a check book and check register
metaphor to guide the user through the bill paying process. This enables the user to
rely on well-understood visual cues, rather than memorizing an arcane interaction
sequence.

Disclose information in a progressive fashion. The interface should be or-
ganized hierarchically. That is, information about a task, an object, or some behav-
ior should be presented first at a high level of abstraction. More detail should be
presented after the user indicates interest with a mouse pick. An example, common
to many word-processing applications, is the underlining function. The function it-
self is one of a number of functions under a text style menu. However, every under-
lining capability is not listed. The user must pick underlining, and then all underlining
options (e.g., single underline, double underline, dashed underline) are presented.

SAFEHOME

PART TWO SOFTWARE ENGINEERING PRACTICE

floor plan, don'fyou?’
Vinod: Uh huh.:

12.1.3 Make the Interface Consistent

The interface should present and acquire information in a consistent fashion. This
implies that (1) all visual information is organized according to a design standard
that is maintained throughout all screen displays, (2) input mechanisms are con-
strained to a limited set that is used consistently throughout the application, and
(3) mechanisms for navigating from task to task are consistently defined and imple-
mented. Mandel [MAN97] defines a set of design principles that help make the in-
terface consistent:

o shoukdoct diffrent. Things hot look th same should ac he same.”

Allow the user to put the current task into a meaningful context. Many in-
terfaces implement complex layers of interactions with dozens of screen images. It
is important to provide indicators (e.g., window titles, graphical icons, consistent
color coding) that enable the user to know the context of the work at hand. In addi-
tion, the user should be able to determine where he has come from and what alter-
natives exist for a transition to a new task.

Maintain consistency across a family of applications. A set of applications (or
products) should all implement the same design rules so that consistency is main-
tained for all interaction.

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 361

If past interactive models have created user expectations, do not make
changes unless there is a compelling reason to do so. Once a particular in-
teractive sequence has become a de facto standard (e.g., the use of alt-S to save a
file), the user expects this in every application she encounters. A change (e.g., using
alt-S to invoke scaling) will cause confusion.

The interface design principles discussed in this and the preceding sections pro-
vide basic guidance for a software engineer. In the sections that follow, we examine

the interface design process itself.

Usability

In an insightful paper on usability, Larry

Constantine [CON95] asks a question that has
significant bearing on the subject: “What do users want,
anyway?” He answers this way: “What users really want are
good tools. All software systems, from operating systems and
languages to data entry and decision support applications,
are just tools. End users want from the tools we engineer for
them much the same as we expect from the tools we use.
They want systems that are easy to learn and that help them
do their work. They want software that doesn’t slow them
down, that doesn't trick or confuse them, that does make it
easier to make mistakes or harder to finish the job.”

Constantine argues that usability is not derived from
aesthetics, state-of-the-art interaction mechanisms, or built-
in interface intelligence. Rather, it occurs when the
architecture of the interface fits the needs of the people
who will be using it.

A formal definition of usability is somewhat illusive.
Donahue and his colleagues [DON99] define it in the
following manner: “Usability is a measure of how well a
computer system . . . facilitates learning; helps learners
remember what they've learned; reduces the likelihood of
errors; enables them to be efficient, and makes them
satisfied with the system.”

The only way to determine whether “usability” exists
within a system you are building is to conduct usability
assessment or testing. Watch users interact with the system

@ answer the following questions [CON95]:

o)

o s the system usable without continual help or
instruction?

o Do the rules of interaction help a knowledgeable user
to work efficiently2

e Do interaction mechanisms become more flexible as
users become more knowledgeable?

e Has the system been tuned to the physical and social
environment in which it will be used?)

o Is the user aware of the state of the system? Does the
user know where she is at all times?

e Is the interface structured in a logical and consistent
manner?

o Are inferaction mechanisms, icons, and procedures
consistent across the interface?

o Does the inferaction anficipate errors and help the user
correct them?

o s the interface tolerant of errors that are made?

e s the interaction simple?

If each of these questions is answered yes, it is likely that
usability has been achieved.

Among the many measurable benefits derived from a
usable system are [DON99] increased sales and customer
satisfaction, competitive advantage, better reviews in the
media, better word of mouth, reduced support costs,
improved end-user productivity, reduced training costs,
reduced documentation costs, reduced likelihood of

litigation from unhappy customers.

)

The overall process for analyzing and designing a user interface begins with the cre-
- ation of different models of system function (as perceived from the outside). The
human- and computer-oriented tasks that are required to achieve system function

362

Coa

Even a novice user
wants shortufs; even
knowledgeable,
frequent users
somefimes need
guidance. Give them
what they need.

PART TWO SOFTWARE ENGINEERING PRACTICE

are then delineated; design issues that apply to all interface designs are considered;
tools are used to prototype and ultimately implement the design model; and the re-
sult is evaluated by end-users for quality.

12.2.1 Interface Analysis and Design Models

Four different models come into play when a user interface is to be analyzed and de-
signed. A human engineer (or the software engineer) establishes a user model, the
software engineer creates a design model, the end-user develops a mental image that
is often called the user’s mental model or the system perception, and the implementers
of the system create a implementation model. Unfortunately, each of these models
may differ significantly. The role of interface designer is to reconcile these differences ‘
and derive a consistent representation of the interface.

The user model establishes the profile of end-users of the system. To build an ef-
fective user interface, “all design should begin with an understanding of the intended
users, including profiles of their age, sex, physical abilities, education, cultural or eth-
nic background, motivation, goals and personality” [SHN90]. In addition, users can
be categorized as

Novices. No syntactic knowledge' of the system and little semantic knowledge?
of the application or computer usage in general.

Knowledgeable, intermittent users. Reasonable semantic knowledge of the applica-
tion but relatively low recall of syntactic information necessary to use the interface.

Knowledgeable, frequent users. Good semantic and syntactic knowledge that of-
ten leads to the “power-user syndrome,” that is, individuals who look for shortcuts
and abbreviated modes of interaction.

A design model of the entire system incorporates data, architectural, interface,
and procedural representations of the software. The requirements specification may
establish certain constraints that help define the user of the system, but the interface
design is often only incidental to the design model.>

The user’s mental model (system perception) is the image of the system that end-
users carry in their heads. For example, if the user of a particular page layout system

1 Inthis context, syntactic knowledge refers to the mechanics of interaction that is required to use the
interface effectively.

2 Semantic knowledge refers to the underlying sense of the application—an understanding of the
functions that are performed, the meaning of input and output, and the goals and objectives of the
system.

3 This is not the way things should be. In many cases, user interface design is as important as archi-
tectural and component-level design.

N

e,
POINT

The user’s mental

model shapes how

the user perceives the

interface and whether

the Ul meets the user's

needs.

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 363

were asked to describe its operation, the system perception would guide the re-
sponse. The accuracy of the description will depend upon the user’s profile (e.g.,
novices would provide a sketchy response at best) and overall familiarity with soft-
ware in the application domain. A user who understands page layout fully but has
worked with the specific system only once might actually be able to provide a more
complete description of its function than the novice who has spent weeks trying to
learn the system.

The implementation model combines the outward manifestation of the computer-
based system (the look and feel of the interface), coupled with all supporting infor-
mation (books, manuals, videotapes, help files) that describe system syntax and
semantics. When the implementation model and the user’s mental model are coin-
cident, users generally feel comfortable with the software and use it effectively. To
accomplish this “melding” of the models, the design model must have been devel-
oped to accommodate the information contained in the user model, and the imple-
mentation model must accurately reflect syntactic and semantic information about
the interface.

The models described in this section are “abstractions of what the user is doing
or thinks he is doing or what somebody else thinks he ought to be doing when he
uses an interactive system” [MON84]. In essence, these models enable the interface
designer to satisfy a key element of the most important principle of user interface de-
sign: Know the user, know the tasks.

12.2.2 The Process

The analysis and design process for user interfaces is iterative and can be repre-
sented using a spiral model similar to the one discussed in Chapter 3. Referring to
Figure 12.1, the user interface analysis and design process encompasses four distinct
framework activities [MAN97]:

1. User, task, and environment analysis and modeling.

2. Interface design.

3. Interface construction (implementation).

4. Interface validation.
The spiral shown in Figure 12.1 implies that each of these tasks will occur more than
once, with each pass around the spiral representing additional elaboration of re-
quirements and the resultant design. In most cases, the construction activity in-
volves prototyping—the only practical way to validate what has been designed.

Interface analysis focuses on the profile of the users who will interact with the sys-
tem. Skill level, business understanding, and general receptiveness to the new system

364 PART TWO SOFTWARE ENGINEERING PRACTICE

The user
interface
design process Interface S L.Jser, task, and .
. validation environment analysis
Implementation)foce design
\
are recorded; and different user categories are defined. For each user category, re-
quirements are elicited. In essence, the software engineer attempts to understand the
system perception (Section 12.2.1) for each class of users.
1 the user experience than rectify it.” :

Once general requirements have been defined, a more detailed task analysis is
conducted. Those tasks that the user performs to accomplish the goals of the system
are identified, described, and elaborated (over a number of iterative passes through
the spiral). Task analysis is discussed in more detail in Section 12.3.

The analysis of the user environment focuses on the physical work environment.
Among the questions to be asked are:

What do o Where will the interface be located physically?
we need to e Will the user be sitting, standing, or performing other tasks unrelated to the
k bout th & 8.oTP 8
now ahout Te interface?
enzironment as
we begin Ul e Does the interface hardware accommodate space, light, or noise constraints?
design?

e Are there special human factors considerations driven by environmental
factors?

The information gathered as part of the analysis activity is used to create an analysis

model for the interface. Using this model as a basis, the design activity commences.
The goal of interface design is to define a set of interface objects and actions (and

their screen representations) that enable a user to perform all defined tasks in a

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 365

manner that meets every usability goal defined for the system. Interface design is dis-
cussed in more detail in Section 12.4.

The construction activity normally begins with the creation of a prototype that en-
ables usage scenarios to be evaluated. As the iterative design process continues,
user interface development tools (see sidebar in Section 12.4) may be used to com-
plete the construction of the interface.

Validation focuses on (1) the ability of the interface to implement every user task
correctly, to accommodate all task variations, and to achieve all general user re-
quirements; (2) the degree to which the interface is easy to use and easy to learn; and
(3) the users’ acceptance of the interface as a useful tool in their work.

As we have already noted, the activities described in this section occur iteratively.
Therefore, there is no need to attempt to specify every detail (for the analysis or de-
sign model) on the first pass. Subsequent passes through the process elaborate task
detail, design information, and the operational features of the interface.

B How do we
%" learn what
the user wants
from the UI?

A key tenet of all software engineering process models is this: you better understand
the problem before you attempt to design a solution. In the case of user interface de-
sign, understanding the problem means understanding (1) the people (end-users)
who will interact with the system through the interface; (2) the tasks that end-users
must perform to do their work, (3) the content that is presented as part of the inter-
face, and (4) the environment in which these tasks will be conducted. In the sections
that follow, we examine each of these elements of interface analysis with the intent
of establishing a solid foundation for the design tasks that follow.

12.3.1 User Analysis

Earlier we noted that each user has a mental image or system perception of the soft-
ware that may be different from the mental image developed by other users. In ad-
dition, the user’s mental image may be vastly different from the software engineer’s
design model. The only way that a designer can get the mental image and the design
model to converge is to work to understand the users themselves as well as how
these people will use the system. Information from a broad array of sources can be
used to accomplish this:

User Interviews. The most direct approach, interviews involve representatives
from the software team who meet with end-users to better understand their needs,

4 1t is reasonable to argue that this section could be placed in Chapter 8, since requirements analy-
sis issues are discussed there. It has been positioned here because interface analysis and design
are intimately connected to one another, and the boundary between the two is often fuzzy.

368 PART TWO SOFTWARE ENGINEERING PRACTICE

SAreHoME
o

[Jamie shows the informal
Informal use-case: |

| select an odmrmstrahon
want fo do a new sef-up,
existing set-up. If I'select o

ﬁ#mh it's a different point |
sefs fbe system up, configures SEMSOTs and cameras and ploce ﬁmm
fhe ik | get to label each, or ﬂ'\emiemwﬂb

move sensors or comerus, cd”cf new
existing ones, edit the floor plan, o
cameras and sensors. Iri .every cas

to do consistency cheekmg and
mistakes.
Vinod (after reading fhc ‘
are probably some useful design po#ﬁl'ns

. components for GUls for drawing pror
50 bucks we can implement someé orrrost of

; inisiration” as one administrator imerfaceyusir{g them.
Jl other SafeHome functions. Jamie: Agreed. I'll check it o

Task elaboration. In Chapter 9, we discussed stepwise elaboration (also called
Sfunctional decomposition or stepwise refinement) as a mechanism for refining the pro-
cessing tasks that are required for software to accomplish some desired function.
Task analysis for interface design uses an elaborative approach to assist in under-
standing the human activities the user interface must accommodate.

Task analysis can be applied in two ways. As we have already noted, an interac-
tive, computer-based system is often used to replace a manual or semi-automated
activity. To understand the tasks that must be performed to accomplish the goal of
the activity, a human engineer® must understand the tasks that humans currently

5 In many cases, the tasks described in this section are performed by a software engineer. 1deally,
this person has had some training in human engineering and user interface design.

Gpwcss

Tosk elaboration is
quite useful, but it can
also be dangerous. Just
because you have elab-
orated a fusk, do not
assume that there isn’t
another way fo do it
and that the other way
will be tried when the
Ul'is implemented.

ﬁpwcs‘

Although abject-
elaboration is

useful, it should

not be used as
standalone approach.
The user’s voice must
be considered during
task analysis.

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 369

perform (when using a manual approach) and then map these into a similar (but not
necessarily identical) set of tasks that are implemented in the context of the user in-
terface. Alternatively, the human engineer can study an existing specification for a
computer-based solution and derive a set of user tasks that will accommodate the
user model, the design model, and the system perception.)

Regardless of the overall approach to task analysis, a human engineer must first
define and classify tasks. We have already noted that one approach is stepwise elab-
oration. For example, assume that a small software company wants to build a
computer-aided design system explicitly for interior designers. By observing an inte-
rior designer at work, the engineer notices that interior design comprises a number
of major activities: furniture layout (note the use-case discussed earlier), fabric and
material selection, wall and window coverings selection, presentation (to the cus-
tomer), costing, and shopping. Each of these major tasks can be elaborated into sub-
tasks. For example, using information contained in the use-case, furniture layout can
be refined into the following tasks: (1) draw a floor plan based on room dimensions;
(2) place windows and doors at appropriate locations; (3a} use furniture templates
to draw scaled furniture outlines on floor plan; (3b) use accent templates to draw
scaled accents on floor plan. (4) move furniture outlines and accent outlines to get
best placement; (5) label all furniture and accent outlines; (6) draw dimensions to
show location; (7) draw perspective rendering view for customer. A similar approach
could bg used for each of the other major tasks.

Subtasks 1-7 can each be refined further. Subtasks 1-6 will be performed by ma-
nipulating information and performing actions within the user interface. On the
other hand, subtask 7 can be performed automatically in software and will result in
little direct user interaction.® The design model of the interface should accommodate
each of these tasks in a way that is consistent with the user model (the profile of a
“typical” interior designer) and system perception (what the interior designer expects
from an automated system).

Object elaboration. Rather than focusing on the tasks that a user must perform,
the software engineer examines the use-case and other information obtained from
the user and extracts the physical objects that are used by the interior designer.
These objects can be categorized into classes. Attributes of each class are defined,
and an evaluation of the actions applied to each object provide the designer with a
list of operations. For example, the furniture template might translate into a class
called Furniture with attributes that might include size, shape, location and others. The
interior designer would select the object from the Furniture class, move it to a posi-
tion on the floor plan (another object in this context), draw the furniture outline, and
so forth. The tasks select, move, and draw are operations. The user interface analysis

6 However, this may not be the case. The interior designer might want to specify the perspective to
be drawn, the scaling, the use of color and other information. The use-case related to drawing per-
spective renderings would provide the information we need to address this task.

370

PART TWO SOFTWARE ENGINEERING PRACTICE

model would not provide a literal implementation for each of these operations. How-
ever, as the design is elaborated, the details of each operation are defined.

Workflow analysis. When a number of different users, each playing different
roles, makes use of a user interface, it is sometimes necessary to go beyond task
analysis and object elaboration and apply workflow analysis. This technique allows a
software engineer to understand how a work process is completed when several
people (and roles) are involved. Consider a company that intends to fully automate
the process of prescribing and delivering prescription drugs. The entire process’ will
revolve around a Web-based application that is accessible by physicians (or their as-
sistants), pharmacists, and patients. Workflow can be represented effectively with a
UML swimlane diagram (a variation on the activity diagram).

We consider only a small part of the work process: the situation that occurs when
a patient asks for a refill. Figure 12.2 presents a swimlane diagram that indicates the
tasks and decisions for each of the three roles noted above. This information may
have been elicited via interview or from use-cases written by each actor. Regardless,
the flow of events (shown in the figure) enable the interface designer to recognize
three key interface characteristics:

1. Each user implements different tasks via the interface; therefore, the look
and feel of the interface designed for the patient will be different from the
- one defined for pharmacists or physicians.

L 4

2. The interface design for pharmacists and physicians must accommodate ac-
cess to and display of information from secondary information sources (e.g.,
access to inventory for the pharmacist and access to information about alter-
native medications for the physician).

3. Many of the activities noted in the swimlane diagram can be further elabo-
rated using task analysis and/or object elaboration (e.g., fills prescription
could imply a mail-order delivery, a visit to a pharmacy, or a visit to a special
drug distribution center). ‘

Hierarchical representation. As the interface is analyzed, a process of elabora-
tion occurs. Once workflow has been established, a task hierarchy can be defined for
each user type. The hierarchy is derived by a stepwise elaboration of each task iden-
tified for the user. For example, consider the user task requests that a prescription be
refilled. The following task hierarchy is developed:

Request that a prescription be refilled
e Provide identifying information

e Specify name

7 This example has been adapted from [HAC98].

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 371

m Swimlane diagram for prescription refill function

Patient Pharmacist Physician

No refills

/ remaining o

Refills
remaining

Approves refill

Refill not
allowed

Out of stock

Alternative /

available <>

None

372

How do we

determine
the format and
aesthetics of
content displayed
as part of the UI?

PART TWO SOFTWARE ENGINEERING PRACTICE

e Specify userid
e Specify PIN and password

e Specify prescription number
e Specify date refill is required
To complete the request that a prescription be refilled tasks, three subtasks are de-

fined. One of these subtasks, provide identifying information, is further elaborated in
three additional sub-subtasks.

ﬂ;hdmlogy hﬂmqsenhunloforcethemtoudnmoﬁﬁm

12.3.3 Analysis of Display Content

The user tasks identified in the preceding section lead to the presentation of a va-
riety of different types of content. For modern applications, display content can
range from character-based reports (e.g., a spreadsheet), graphical displays (e.g.,
a histogram, a 3-D model, a picture of a person), or specialized information (e.g.,
audio or video files). The analysis modeling techniques discussed in Chapter 8
identify the output data objects that are produced by an application. These data ob-
jects may be (1) generated by components (unrelated to the interface) in other parts
of the application; (2) acquired from data stored in a database that is accessible
from the application; or (3) transmitted from systems external to the application in
question.

During this interface analysis step, the format and aesthetics of the content (as it
is displayed by the interface) are considered. Among the questions that are asked
and answered are:

o Are different types of data assigned to consistent geographic locations on the
screen (e.g., photos always appear in the upper right hand corner)?

o Can the user customize the screen location for content?

o Is proper on-screen identification assigned to all content?

e How is a large report partitioned for ease of understanding?

o Will mechanisms be available for moving directly to summary information for
large collections of data.

o Will graphical output be scaled to fit within the bounds of the display device
that is used?

e How will color be used to enhance understanding?
e How will error messages and warnings be presented to the user?

As each of these (and other) questions are answered, the requirements for content
presentation are established.

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 373

12.3.4 Analysis of the Work Environment

Hackos and Redish {HAC98] discuss the importance of work environment analysis
when they state:

People do not perform their work in isolation. They are influenced by the activity around
them, the physical characteristics of the workplace, the type of equipment they are using,
and the work relationships they have with other people. If the products you design do not
fit into the environment, they may be difficult or frustrating to use.

In some applications the user interface for a computer-based system is placed in a
“user-friendly location” (e.g., proper lighting, good display height, easy keyboard ac-
cess), but in others (e.g., a factory floor or an airplane cockpit) lighting may be sub-
optimal, noise may be a factor, a keyboard or mouse may not be an option, display
placement may be less than ideal. The interface designer may be constrained by fac-
tors that mitigate against ease of use.

In addition to physical environmental factors, the work place culture also comes
into play. Will system interaction be measured in some manner (e.g., time per trans-
action or accuracy of a transaction)? Will two or more people have to share infor-
mation before an input can be provided? How will support be provided to users of
the system? These and many related questions should be answered before the inter-
face design commences.

Once interface analysis has been completed, all tasks (or objects and actions) re-
quired by the end-user have been identified in detail, and the interface design activ-
ity commences. Interface design, like all software engineering design, is an iterative
process. Each user interface design step occurs a number of times, each elaborating
and refining information developed in the preceding step.

Although many different user interface design models (e.g., [NOR86], [NIEGO])
have been proposed, all suggest some combination of the following steps:

1. Using information developed during interface analysis (Section 12.3), define
interface objects and actions (operations).

2. Define events (user actions) that will cause the state of the user interface to
change. Model this behavior.

Depict each interface state as it will actually look to the end-user.

Indicate how the user interprets the state of the system from information pro-
vided through the interface. '

In some cases, the interface designer may begin with sketches of each interface state
(i.e., what the user interface looks like under various circumstances) and then work
backward to define objects, actions, and other important design information. Re-
gardless of the sequence of design tasks, the designer must (1) always follow the

374

PART TWO SOFTWARE ENGINEERING PRACTICE

golden rules discussed in Section 12.1, (2) model how the interface will be imple-
mented, and (3) consider the environment (e.g., display technology, operating sys-
tem, development tools) that will be used.

| }amgmofgmm arts, technology, and psychology.”

12.4.1 Applying Interface Design Steps

An important step in interface design is the definition of interface objects and the ac-
tions that are applied to them. To accomplish this, use-cases are parsed in much the
same way as described in Chapter 8. That is, a description of a use-case is written.
Nouns (objects) and verbs (actions) are isolated to create a list of objects and actions.

Once the objects and actions have been defined and elaborated iteratively, they
are categorized by type. Target, source, and application objects are identified. A
source object (e.g., a report icon) is dragged and dropped onto a target object (e.g., a
printer icon). The implication of this action is to create a hard-copy report. An appli-
cation object represents application-specific data that are not directly manipulated as
part of screen interaction. For example, a mailing list is used to store names for a
mailing. The list itself might be sorted, merged, or purged (menu-based actions), but
it is not dragged and dropped via user interaction.

When the designer is satisfied that all important objects and actions have been
defined (for one design iteration), screen layout is performed. Like other interface de-
sign activities, screen layout is an interactive process in which graphical design and
placement of icons, definition of descriptive screen text, specification and titling for
windows, and definition of major and minor menu items is conducted. If a real world
metaphor is appropriate for the application, it is specified at this time, and the layout
is organized in a manner that complements the metaphor.

To provide a brief illustration of the design steps noted previously, we consider a
user scenario for the SafeHome system (discussed in earlier chapters). A preliminary
use-case (written by the homeowner) for the interface follows:

Preliminary use-case: | want to gain access to my SafeHome system from any remote
location via the Internet. Using browser software operating on my notebook computer
(while I'm at work or traveling), I can determine the status of the alarm system; arm or
disarm the system; reconfigure security zones; and view different rooms within the house
via preinstalled video cameras.

To access SafeHome from a remote location, 1 provide an identifier and a password.
These define levels of access (e.g., all users may not be able to reconfigure the system) and
provide security. Once validated, 1 can check the status of the system and change status by
arming or disarming SafeHome. I can reconfigure the system by displaying a floor plan of the
house, viewing each of the security sensors, displaying each currently configured zone, and
modifying zones as required. I can view the interior of the house via strategically placed
video cameras. I can pan and zoom each camera to provide different views of the interior.

€

Although automated
tools can be useful in

developing layout

prototypes, somefimes
o pencil and paper are

all that are needed.

A wide variely of U

“pomtersfo g

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 375

Based on this use-case, the following homeowner tasks, objects, and data items are
identified:

e accesses the SafeHome system

e enters an ID and password to allow remote access
o checks system status

e arms or disarms SafeHome system

e displays floor plan and sensor locations

e displays zones on floor plan

o changes zones on floor plan

o displays video camera locations on floor plan

o selects video camera for viewing

o views video images

e pans or zooms the video camera

Objects (boldface) and actions (italics) are extracted from this list of homeowner
tasks. The majority of objects noted are application objects. However, video cam-
era location (a source object) is dragged and dropped onto video camera (a tar-
get object) to create a video image (a window that contains the video display).

A preliminary sketch of the screen layout for video monitoring is created
(Figure 12.3).® To invoke the video image, a video camera location icon, C, located
in the floor plan displayed in the monitoring window, is selected. In this case, a
camera location in the living room, LR, is then dragged and dropped onto the
video camera icon in the upper left-hand portion of the screen. The video image
window appears, displaying streaming video from the camera located in the liv-
ing room (LR). The zoom and pan control slides are used to control the magnifi-
cation and direction of the video image. To select a view from another camera, the
user simply drags and drops a different camera location icon into the camera icon
in the upper left-hand corner of the screen.

The layout sketch shown would have to be supplemented with an expansion of
each menu item within the menu bar, indicating what actions are available for the
video monitoring mode (state). A complete set of sketches for each homeowner task
noted in the user scenario would be created during the interface design.

12.4.2 User Interface Design Patterns

Sophisticated graphical user interfaces have become so common that a wide variety
of user interface design patterns has emerged. As we noted earlier in this book, a

8 Note that this differs somewhat from the implementation of these features in earlier chapters. This
might be considered a first draft design and represents one alternative that might be considered.

376 PART TWO SOFTWARE ENGINEERING PRACTICE

Preliminary

{ Access Configure System Status View Monitoring

screen layout !

Connect

O

Status

in[[I

LTI Pan ATTTTITH A

design pattern is an abstraction that prescribes a design solution to a specific, well-
bounded design problem. Each of the example patterns (and all patterns within each
category) presented in the sidebar would also have a complete component-level de-
sign, including design classes,'attributes, operations, and interfaces.

m(User Interface Patterns

Hundreds of Ul patterns have been proposed
- over the past decade. Tidwell {TID02] and
vanWelie [WELO1] provide taxonomies’ of user interface

Example patterns within each of these categories are
presented in this sidebar.

Whole Ul. Provides design guidance for top-level

structure and navigation.

Pattern: top-level navigation

Brief description: Provides a top-level menu, often
coupled with a logo or identifying graphic, that

design patterns that can be organized into 10 categories.

>,

enables direct navigation to any of the system’s major
functions.

Page layout. Addresses the general organization of

pages (for Web sites) or distinct screen displays (for

inferactive applications).

Pattern: cord stack

Brief description: Provides the appearance of a stack
of tabbed cards, each selectable with @ mouse click
and each representing specific subfunctions or content
categories.

2 Full patterns descriptions (along with dozens of other patterns) can be found at {TID02] and [WELO1].

CHAPTER 12 PERFORMING USER INTERFACE DESIGN

Forms and input. Considers a variety of design

techniques for completing form-level input.

Pattern: fill-in-the-blanks

Brief description: Allow alphanumeric data to be
entered in a “text box.”

Tables. Provide design guidance for creating and

manipulating tabular data of alf kinds.

Pattern: sortable table

Brief description: Displays a long list of records that
can be sorted by selecting a toggle mechanism for any
column label.

Direct data manipulation. Addresses data editing,

modification, and transformation.

Pattern: bread crumbs

Brief description: Provides a full navigation path when
the user is working with a complex hierarchy of pages
or display screens.

Navigation. Assists the user in navigating through

hierarchical menus, Web pages, and interactive display

screens.

Pattern: edit-in-place

Brief description: Provides simple text editing
capability for cerfain types of content in the location
that it is displayed.

Searching. Enables content-specific searches through
information maintained within a Web site or contained by

377

persistent data stores that are accessible via an interactive

application.

Pattern: simple search

Brief description: Provides the ability to search a Web
site or persistent data source for a simple data item
described by an alphanumeric string.

Page elements. Implement specific elements of a

Web page or display screen.

Pattern: wizard

Brief description: Tokes the user through a complex
task one step at a time, providing guidance for the
completion of the task through a series of simple
window displays.

E-commerce. Specific to Web sites, these patterns

implement recurring elements of e-commerce applications.

Pattern: shopping cart

Brief description: Provides a list of items selected for
purchase.

Miscellaneous. Patterns that do not easily fit into one

of the preceding categories. In some cases, these patterns

are domain dependent or occur only for specific classes of

users.

Pattern: progress indicator

Brief description: Provides an indication of progress
when an operation is under way.

A comprehensive discussion of user interface patterns is beyond the scope of this
book. The interested reader should see [DUY02], [BORO1], [WELO1], and [TID02] for
i further information.

12.4.3 Design Issues

Asthe design of a user interface evolves, four common design issues almost always sur-
face: system response time, user help facilities, error information handling, and com-
mand labeling. Unfortunately, many designers do not address these issues until relatively
late in the design process (sometimes the first inkling of a problem doesn't occur until
an operational prototype is available). Unnecessary iteration, project delays, and cus-
tomer frustration often result. It is far better to establish each as a design issue to be con-
sidered at the beginning of software design, when changes are easy and costs are low.

ke that people make when trying to design something completely foolproof is to

378

PART TWO SOFTWARE ENGINEERING PRACTICE

Response time. System response time is the primary complaint for many interac-
tive applications. In general, system response time is measured from the point at
which the user performs some control action (e.g., hits the return key or clicks a
mouse) until the software responds with the desired output or action.

System response time has two important characteristics: length and variability. If
system response is too long, user frustration and stress is the inevitable result. Vari-
ability refers to the deviation from average response time, and, in many ways, it is
the most important response time characteristic. Low variability enables the user to
establish an interaction rhythm, even if response time is relatively long. For exam-
ple, a 1-second response to a command will often be preferable to a response that
varies from 0.1 to 2.5 seconds. When variability is significant, the user is always off
balance, always wondering whether something “different” has occurred behind the
scenes.

Help facilities. Almost every user of an interactive, computer-based system re-
quires help now and then. In some cases, a simple question addressed to a knowl-
edgeable colleague can do the trick. In others, detailed research in a multivolume set
of “user manuals” may be the only option. In most cases, however, modern software
provides on-line help facilities that enable a user to get a question answered or re-
solve a problem without leaving the interface.

A number of design issues [RUB88] must be addressed when a help facility is
considered:

o Will help be available for all system functions and at all times during system
interaction? Options include help for only a subset of all functions and
actions or help for all functions.

o How will the user request help? Options include a help menu, a special
function key, or a HELP command.

o How will help be represented? Options include a separate window, a
reference to a printed document (less than ideal), or a one- or two-line
suggestion produced in a fixed screen location.

e How will the user return to normal interaction? Options include a return
button displayed on the screen, a function key, or control sequence.

e How will help information be structured? Options include a “flat” structure in
which all information is accessed through a keyword, a layered hierarchy of
information that provides increasing detail as the user proceeds into the
structure, or the use of hypertext.

Error handling. Error messages and warnings are “bad news” delivered to users
of interactive systems when something has gone awry. At their worst, error mes-
sages and warnings impart useless or misleading information and serve only to in-
crease user frustration: There are few computer users who have not encountered an

What charac-

teristics
should a “good”
error message
have?

CHAPTER 12 PERFORMING USER INTERFACE DESIGN 379

error of the form: “Application XXX has been forced to quit because an error of type 1023
has been encountered.” Somewhere, an explanation for error 1023 must exist; other-
wise, why would the designers have added the identification? Yet, the error message
provides no real indication of what went wrong or where to look to get additional in-
formation. An error message presented in this manner does nothing to assuage user
anxiety or to help correct the problem.

hl—-—-‘lo correct this error and continue, enter any 11-digit prime um e

In general, every error message or warning produced by an interactive system
should have the following characteristics:

o The message should describe the problem in language the user can under-
stand.

e The message should provide constructive advice for recovering from the error.

e The message should indicate any negative consequences of the error (e.g.,
potentially corrupted data files) so that the user can check to ensure that they
have not occurred (or correct them if they have).

e The message should be accompanied by an audible or visual cue. That is, a
beep might be generated to accompany the display of the message, or the
message might flash momentarily or be displayed in a color that is easily
recognizable as the “error color.”

¢ The message should be nonjudgmental. That is, the wording should never
place blame on the user.

Because no one really likes bad news, few users will like an error message no mat-
ter how well designed. But an effective error message philosophy can do much to
improve the quality of an interactive system and will significantly reduce user frus-
tration when problems do occur.

Menu and command labeling. The typed command was once the most common
mode of interaction between users and system software and was commonly used for
applications of every type. Today, the use of window-oriented, point and pick inter-
faces has reduced reliance on typed commands, but many power-users continue to
prefer a command-oriented mode of interaction. A number of design issues arise
when typed commands or menu labels are provided as a mode of interaction:

e Will every menu option have a corresponding command?

e What form will commands take? Options include a control sequence (e.g.,
alt-P), function keys, or a typed word.

e How difficult will it be to learn and remember the commands? What can be
done if a command is forgotten?

380

Guidelines for
developing accessible
software can be found

g

www-3.ibm,
com/able/
guidelines/soft
ware/accesssof
tware.himl.

"
User Interface Development

-
Q Obijective: These tools enable a sofiware Mechanics: Modern user interfaces are constructed with a
engineer to create a sophisticated GUI with set of reusable components that are coupled with some
relatively little custom software development. The tools custom components developed to provide specialized
provide access to reusable components and make the features. Most user interface development tools enable a
creation of an inferface a matter of selecting from software engineer fo create an interface using “drag and
predefined capabilifies that are assembled using the tool. drop” capability. That is, the developer selects from many

PART TWO SOFTWARE ENGINEERING PRACTICE

o Can commands be customized or abbreviated by the user?
e Are menu labels self-explanatory within the context of the interface?

e Are submenus consistent with the function implied by a master menu item?

As we noted earlier in this chapter, conventions for command usage should be es-
tablished across all applications. It is confusing and often error-prone for a user to
type alt-D when a graphics object is to be duplicated in one application and alt-D
when a graphics object is to be deleted in another. The potential for error is obvious.

Application accessibility. As computing applications become ubiquitous, software
engineers must ensure that interface design encompasses mechanisms that enable
easy access for those with special needs. Accessibility for users (and software engineers)
who may be physically challenged is an imperative for moral, legal, and business rea-
sons. A variety of accessibility guidelines (e.g., [W3C03])—many designed for Web ap-
plications but often applicable to all types of software—provide detailed suggestions for
designing interfaces that achieve varying levels of accessibility. Others (e.g., [APP03],
[MICO03]) provide specific guidelines for “assistive technology” that addresses the needs
of those with visual, hearing, mobility, speech, and learning impairments.

Internationalization. Software engineers and their managers invariably underes-
timate the effort and skills required to create user interfaces that accommodate the
needs of different locales and languages. Too often, interfaces are designed for one
locale and language and then jury-rigged to work in other countries. The challenge
for interface designers is to create “globalized” software. That is, user interfaces
should be designed to accommodate a generic core of functionality that can be de-
livered to all who use the software. Localization features enable the interface to be
customized for a specific market.

A variety of internationalization guidelines (e.g., [IBM03]) are available to soft-
ware engineers. These guidelines address broad design issues (e.g., screen layouts
may differ in various markets) and discrete implementation issues (e.g., different al-
phabets may create specialized labeling and spacing requirements). The Unicode
standard [UNI03] has been developed to address the daunting challenge of manag-
ing dozens of natural languages with hundred of characters and symbols.

Ay

CHAPTER 12 PERFORMING USER INTERFACE DESIGN

predefined capabilities {e.g., forms builders, interaction
mechanisms, command processing capability) and places
these capabilities within the content of the interface to be
created. '

Representative Tools'?

Macromedia Authorware, developed by macromedia
Inc. www.macromedia.com/software/), has been
designed for the creation of e-learning interfaces and
environments, Makes use of sophisticated construction

\ capabilities.

381

Motif Common Desktop Environment, developed by The \
Open Group www.osf.org/tech/desktop/ cde/), is an
integrated graphical user interface for open systems
desktop computing. It delivers a single, standard
graphical interface for the management of data, files,
and applications.

PowerDesigner/PowerBuilder, developed by Sybase
www.sybase.com/products/internetappdevttools), is a
comprehensive set of CASE tools that include many
capabilities for designing and building GUIs.

12.5 Desian E

e A o S

Once an operational user interface prototype has been created, it must be evaluated
to determine whether it meets the needs of the user. Evaluation can span a formal-
ity spectrum that ranges from an informal “test drive,” in which a user provides im-
promptu feedback to a formally designed study that uses statistical methods for the
evaluation of questionnaires completed by a population of end-users.

The user interface evaluation cycle takes the form shown in Figure 12.4. After the
design model has been completed, a first-level prototype is created. The prototype is

The interface
design evalua-
tion cycle

© "Design
modifications
©are mudé

A ——
Interface design

is complete

Preliminary
esign

Build

' rkoi;o. e fin.
ProchpLtn

10 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

382

PART TWO SOFTWARE ENGINEERING PRACTICE

evaluated by the user,'' who provides the designer with direct comments about the
efficacy of the interface. In addition, if formal evaluation techniques are used (e.g.,
questionnaires, rating sheets), the designer may extract information from these data
(e.g., 80 percent of all users did not like the mechanism for saving data files). Design
modifications are made based on user input, and the next level prototype is created.
The evaluation cycle continues until no further modifications to the interface design
are necessary.

The prototyping approach is effective, but is it possible to evaluate the quality of
a user interface before a prototype is built? If potential problems can be uncovered
and corrected early, the number of loops through the evaluation cycle will be re-
duced and development time will shorten. If a design model of the interface has
been created, a number of evaluation criteria [MOR81] can be applied during early
design reviews:

1. The length and complexity of the written specification of the system and its
interface provide an indication of the amount of learning required by users of
the system.

2. The number of user tasks specified and the average number of actions per
task provide an indication of interaction time and the overall efficiency of the
system.

3. The number of actions, tasks, and system states indicated by the design
model imply the memory load on users of the system.

4. Interface style, help facilities, and error handling protocol provide a general
indication of the complexity of the interface and the degree to which it will be
accepted by the user.

Once the first prototype is built, the designer can collect a variety of qualitative
and quantitative data that will assist in evaluating the interface. To collect qualita-
tive data, questionnaires can be distributed to users of the prototype. Questions can
be (1) simple yes/no response, (2) numeric response, (3) scaled (subjective) re-
sponse, (4) Likert scales (e.g., strongly agree, somewhat agree), (5) percentage (sub-
jective) response, or (6) open-ended.

If quantitative data are desired, a form of time study analysis can be conducted.
Users are observed during interaction, and data—such as number of tasks correctly
completed over a standard time period, frequency of actions, sequence of actions,
time spent “looking” at the display, number and types of errors, error recovery time,
time spent using help, and number of help references per standard time period—are
collected and used as a guide for interface modification.

11 It is important to note that experts in ergonomics and interface design may also conduct reviews
of the interface. These reviews are called heuristic evaluations or cognitive walkthroughs.

